\qquad
\qquad

Polynomimal Functions- Use the leading coefficient and the degree to determine the behavior as x approaches infinity or negative infinity.

Odd Degree	
Positive Leading Coefficient $f(x)=x^{3}-2 x^{2}-4$ $\begin{aligned} & \lim _{x \rightarrow \infty}\left(x^{3}-2 x^{2}-4\right)= \\ & \lim _{x \rightarrow-\infty}\left(x^{3}-2 x^{2}-4\right)= \end{aligned}$	Negative Leading Coefficient $f(x)=-x^{5}+3 x^{3}-x$ $\begin{aligned} & \lim _{x \rightarrow \infty}\left(-x^{5}+3 x^{3}-x\right)= \\ & \lim _{x \rightarrow-\infty}\left(-x^{5}+3 x^{3}-x\right)= \end{aligned}$
Even Degree	
Positive Leading Coefficient $f(x)=x^{4}-3 x^{2}+4$ $\begin{aligned} & \lim _{x \rightarrow \infty}\left(x^{4}-3 x^{2}+4\right)= \\ & \lim _{x \rightarrow-\infty}\left(x^{4}-3 x^{2}+4\right)= \end{aligned}$	Negative Leading Coefficient $f(x)=-x^{4}+x^{2}-x+1$ $\begin{aligned} & \lim _{x \rightarrow \infty}\left(-x^{4}+x^{2}-x+1\right)= \\ & \lim _{x \rightarrow-\infty}\left(-x^{4}+x^{2}-x+1\right)= \end{aligned}$

Rational Functions - Use the Horizontal Asymptote Rules

Rule \#1: If the degree of the numerator = degree of the denominator, then the horizontal asymptote is the ratio of the coefficients

$$
f(x)=\frac{3 x^{2}}{x^{2}-4}
$$

$$
\lim _{x \rightarrow \infty}\left(\frac{3 x^{2}}{x^{2}-4}\right)=\quad \lim _{x \rightarrow-\infty}\left(\frac{3 x^{2}}{x^{2}-4}\right)=
$$

Rule \# 2: If the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is equal to $\boldsymbol{y}=0$

$$
f(x)=\frac{x+1}{x^{2}+x+1}
$$

Rule \#3: If the degree of the numerator is greater than the degree of the denominator, then there is no horizontal asympote and the graph approaches either positive or negative infinity.

$$
f(x)=-\frac{x^{4}}{2 x^{2}-4}
$$

$$
\lim _{x \rightarrow \infty}\left(-\frac{x^{4}}{2 x^{2}-4}\right)=
$$

$$
\lim _{x \rightarrow-\infty}\left(-\frac{x^{4}}{2 x^{2}-4}\right)=
$$

$$
f(x)=-\frac{3 x^{2}}{3 x+4}
$$

$\lim _{x \rightarrow \infty}\left(-\frac{3 x^{2}}{3 x+4}\right)=$
$\lim _{x \rightarrow-\infty}\left(-\frac{3 x^{2}}{3 x+4}\right)=$

