Name \qquad Period
Ms. Schmidt

Date
Pre-Calculus

Bi-Weekly Homework Quiz 12
This is a weekly homework quiz that will be given every week and is due back the following Monday. This quiz is due back: February $\mathbf{2 6}^{\text {th }}, \mathbf{2 0 1 8}$

To receive full credit, all work must be shown. Any correct answer without work shown will receive only 1 point.

1) Find the inverse of the function: $g(x)=\sqrt[5]{x+3}+2$
2) Write a polynomial function that has the given zeros of: $-1,-2-i$
3) If $h(n)=n^{2}-5 n$ and $g(n)=-2 n+3$ find $(h \circ g)(n)$.
4) Identify the vertical asymptotes, horizontal asymptote, slant asymptote, holes, x-intercept, y intercept and the domain of each. If one does not exist put DNE.

$$
f(x)=\frac{x^{2}-5 x+6}{4 x^{2}+12 x}
$$

5) Evaluate the function $f(x)=3 x^{2}-x$ at $\frac{f(x+h)-f(x)}{h}$.
6) Use the Rational Zero Test to list all possible rational zeros for the given function. Use the graph and the Remainder Theorem to determine one zero of the function. Use synthetic division to break down the polynomial further to determine the factors. List all linear factors and zeros of $f(x)$.

$$
f(x)=x^{3}+12 x^{2}+17 x-6
$$

7) Solve the equation $4 e^{x+1}-2=47$. Round to the nearest thousandth.
8) Solve for $\mathrm{x}: \log _{2}(x-14)+\log _{2}(x-8)=4$
9) Find all values of θ for $\sin \theta=-0.823$ where $0 \leq \theta \leq 2 \pi$. (round to the nearest degree first)
10) Find the measure of each side indicated. Round to the nearest tenth.

